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We study local search algorithms for networks with heterogeneous edge weights, testing them on scale-free
and Erdös-Rényi networks. We assume that the location of the destination node is discovered when it is two
edges away, and that the search cost is additive. It was previously shown that a search strategy preferring
high-degree nodes reduces the average search cost over a simple random walk. In the prior work, for the case
when the edge costs are randomly distributed, a different preference was investigated �high local betweenness
centrality �LBC��, and was found to be superior to high-degree preference in scale-free networks, with the
exception for the most sparse ones. We have found several preference criteria that are simpler and which, in all
networks we tested, yield a lower cost than other criteria including high-degree, high-LBC, and low-edge cost.
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I. INTRODUCTION

A. Motivation: Peer-to-peer networks

Spreading messages in random graphs has been investi-
gated for several reasons. One is to model interactions in
large social networks. Another is to actually optimize mes-
sage delivery in existing communication networks that were
formed without any “central planning.”

Adamic et al. �1� cite peer-to-peer networks created by a
set of participants that collectively store a set of files. As they
describe, such a system either has a central server that con-
tains information about every file in the system, like NAP-

STER, or is decentralized, like GNUTELLA or FREENET. In the
latter case each participant is a node in a graph, and commu-
nicates only with the participants that are neighbors in that
graph. When a participant needs a file, it sends a request—
without knowing which other participant actually possesses
the file. Therefore to fulfill a request a search has to be
executed.

Kleinberg �2� discussed search strategies in networks that
had a known part—a grid—and unknown random connec-
tions �Watts-Strogatz graphs �3��. In our context a similar
approach cannot work because the sender of the request has
no information about the search target.

Without the knowledge of the target, it is hard to expect a
message to reach its destination without visiting, on the av-
erage, half of the nodes �participants�. This would make the
network intolerably inefficient. We can do better if the loca-
tion of each file is known to many nodes in the network.
Adamic et al. �1� assumed that this information is given to
the direct neighbors and their neighbors �second neighbors�.
This is reasonable because when the set of files is highly
dynamic, updating information about each file itself creates
considerable traffic; the above restriction limits the traffic of
these updates and makes it easy to annotate each file name
with the edge to follow on a shortest route to this file.

B. Graphs modeling the networks

In this paper, the degree of a graph node equals the num-
ber of its neighbors. It was observed �4� that many networks
that are formed spontaneously by evolution or by social in-
teractions follow a power law: the proportion of nodes of
degree d is proportional to d−�, where � is the exponent co-
efficient of a particular power law. As in Ref. �4�, we say that
graphs generated according to this law are scale-free.

To avoid extremes of the variability in the graph structure,
we do not generate nodes with degrees for which there is
high chance that they do not appear at all. More precisely, we
impose the following condition on degree d of a node: d−�

�n−1 �this is Aiello cutoff introduced in Ref. �5��.
The measurement of GNUTELLA networks �6� showed that

they exhibit power-law distribution of degrees, so it is appro-
priate to test search methods for these networks in scale-free
graphs.

We will test our search methods on randomly generated
scale-free graphs, and also in Erdös-Rényi graphs �a.k.a.
Poisson random graphs�. The latter allows us to check if the
efficacy of search methods relies on peculiar properties of
scale-free graphs.

Erdös-Rényi graphs are random graphs in which the de-
gree of nodes has Poisson distribution. One can obtain such a
graph by placing an edge connecting two nodes with some
constant probability p using a separate independent random
trial for each pair of nodes.

C. Local rules and cost models

The search process proposed by Adamic et al. �1� is a
walk through the graph of the network traversed by the mes-
sage that contains the original request. Because the request
follows a single route it is easy to terminate the process when
the destination is found.

One can fully describe such a search method as follows:
each node orders the list of its neighbors according to some
rule. More specifically, after this ordering values of some
function applied to neighboring nodes should be nondecreas-
ing �see the examples in Sec. II�. A request message is sent
and until it reaches its destination it is forwarded to a neigh-
bor of the current node according to the first applicable rule:
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�a� the current node is a second �or first� neighbor of the
destination; according to our model, this node knows the
destination, which means that it has a table of file identifiers
and their locations with an entry for every file stored locally
and at the first and second neighbors; thus the message can
be forwarded to a first neighbor of the destination �or the
destination itself�;

�b� some neighbor of the current node has not been visited
during the current search: the message is forwarded to the
first such node on the neighbor list;

�c� the message is forwarded to a random neighbor, cho-
sen with the exclusion of the neighbor that had this message
immediately before.

Adamic et al. �1� assumed that the cost of the search
process equals the number of edges that it traverses. While
this model may be adequate, there may also be important
reasons to charge different costs for the use of different
edges. For example, different nodes may experience different
congestion, and they may have different capacity for han-
dling traffic.

For this reason, we can give each node a cost coefficient
and the cost of a search will be the sum of the costs of the
nodes that were visited. If the node costs are unpredictable,
they can be modeled with a random distribution. Thada-
makalla et al. �7� made the assumption that edge costs, rather
than node costs, are random. We used this model so we could
directly compare our search heuristic, but the methodology is
essentially the same whether cost is assigned to edges or to
nodes.

D. Previous work and the present contribution

The case when each edge has the same cost was investi-
gated by Adamic et al. �1�. They considered local search
rules: random �random ordering of the list of neighbors� and
high degree �after the ordering, degrees of the neighbors on
the list are nondecreasing�. Rather unsurprisingly, the high
degree rule was better; the nontrivial contribution of Adamic
et al. �1� was to provide the probabilistic analysis that pre-
dicts the cost of both delivery methods.

The case when the edge costs are randomly distributed
was investigated by Thadamakalla et al. �7�. They introduced
a new rule, high local betweenness centrality or LBC, and
verified that in scale-free graphs, especially those that have
low �, it is superior to both the high-degree criterion and the
low edge-cost criterion. In Erdös-Rényigraphs low edge cost
was superior.

The LBC rule is somewhat complex and we have com-
pared it with variants of a very simple rule: high degree or
cost, which means that when we order the neighbors of some
node u, the value of our function applied to v is dv /cuv,
where dv is the degree of v and cuv is the cost of the edge
�u ,v�.

Simulations have shown that this rule performs better than
high LBC, even in graphs in which the LBC rule is inferior
to the simple high-degree rule. In Sec. III we mention other
rules that we tested in our simulations; they were somewhat
more complicated and, dependent on the class of graphs,
they were either inferior to high degree or cost or only mar-
ginally better.

E. The rest of this paper

This paper is organized as follows. In Sec. II we describe
the criteria we investigate in this paper. We explain the rea-
sons for selecting these criteria in Sec. III. In the same sec-
tion we present results of our tests in the form of four figures.
We finish with our conclusions in Sec. IV.

II. LOCAL SEARCH CRITERIA

We will show results for six functions that may serve as
local search criteria. When the search process gives us a
choice of more than one edge to follow, we select one that
maximizes such a function, breaking draws arbitrarily: �i�
random �equal chance of moving along any edge�; �ii� de-
gree; �iii� LBC �defined below�; �iv� 1/edge cost �the prefer-
ence for low values of the edge cost�; �v� degree/edge cost;
�vi� degree2 /edge cost.

The first two functions used for local search criteria were
investigated by Adamic et al. �1�; the next two were tested
by Thadamakalla et al. �7�, and the last two are tested for the
first time in this paper.

LBC function L�v� �local betweenness centrality� is de-
fined in Ref. �7� as follows. When we order neighbors of
node u, we consider G2�u�, the subgraph of the network in-
duced by the set that consists of u, its neighbors, and second
neighbors. When v, w, x are nodes of G2�u�, we define
��v ,w ,x� as the number of shortest paths from w to x �within
G2�u�� that contain node v, and

L�v� = �
w�v�x

��v,w,x� .

This definition was inspired in part by the notion of between-
ness centrality introduced by Freeman �8� in the context of
social networks. The definition in Ref. �7� is a bit more com-
plicated, but we assumed that in G2�u� there exists only one
shortest path from w to x—this assumption is valid when
edges have a continuous cost distribution, so the costs of any
two paths are never equal.

As we will see in the next section, local betweenness
centrality is a rather poor criterion when compared with sim-
pler ratio-based criteria.

III. RESULTS

One can model the process of the search through a ran-
dom graph as the process of generating the edges that we
consider as possible steps of the process. We decide with an
appropriate random distribution the degree of every node.
When we select a neighbor at random, we select it with
probability proportional to its “remaining” degree �the num-
ber of neighbors not selected yet�, the “random edge” distri-
bution �in a scale-free graph, in “random node” distribution
the degree d has probability proportional to d−�, and in the
random edge distribution the degree d has probability pro-
portional to d−�+1�.

The target node t at random builds its set of neighbors—
first, it selects the number of neighbors according to the ran-
dom node distribution, and then it selects the neighbors
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themselves, each according to the random edge distribution.
In particular, this determines the number a of the “remaining
neighbors” of the neighbors of t �each of them has one neigh-
bor selected already, namely, t�.

The delivery process performs a walk. In a step, it first
randomly selects the neighbors of the current node �that were
not selected yet�, and then selects the edge �and thus the next
node� according to the criterion that is used. Recall that the
degrees were selected already, and the new neighbors are
selected according to “edge distribution.” Each selection of a
new neighbor is a Bernoulli trial, and the success happens if
the new neighbor is also a neigbor of t. After a success, u is
the second neighbor of the target t, which means that the
delivery will be completed in two steps.

Each selection has the same chance of success, namely,
the ratio a / �E� where E is the set of all edges �there is some
simplification here, as we have already eliminated some pos-
sibilities, but on the average we inspect a rather small frac-
tion of edges�, so the average number of selections is �E � /a.
The question is how much we have to pay for these selec-
tions.

In a random walk, we traverse an edge with an average
cost of 1, and if we reach a node of degree d, this allows us
to perform d−1 selections, so their cost is 1 / �d−1�. The
probability that we reach a node of degree d is proportional
to d−�+1, and thus probability for a selection to be made with
cost 1 / �d−1� is d−�+1�d−1�.

If we select an edge to the node of the highest degree, we
obviously skew the distribution of the degree of visited node
toward nodes of high degree. Not only we do it in this par-
ticular step, but in the next step we will have more neighbors
than �random walk’s� average, so the highest degree from the
larger set will be on the average higher than from a smaller
set.

If the edges have random costs, then when we traverse to
u of degree d using an edge of cost c we make selections that
cost c / �d−1�. A greedy choice would be to minimize the cost
of the selections made in this step.

However, there may be a conflict between the low cost in
the current step and the low costs in the subsequent steps.
The higher the node degree, the more choice we have, and
thus the lower �on the average� cost of the selections accord-
ing to the best choice. On the other hand, low-degree neigh-
bors are more numerous than high-degree neighbors so we
have a chance that one of them will be a “winner,” in which
case we make some very cheap selections and in the next
step, due to dearth of choice, we make a much more expen-
sive selection. The exact trade off depends on the distribu-
tions of node degrees and of edge costs.

We can improve the odds of walking through the nodes of
high degree while still paying attention to the edge costs as
follows: rather than selecting a node that maximizes d /c or
�d−1� /c, select a node that maximizes d2 /c �or minimizes
c /d2�. For example, if a node of degree 3 competes with a
node of degree 6, and the node of degree 3 can be reached
with an edge of cost 1, it may win if the edge to the node of
degree 3 is more expensive than 2 �criterion d /c�, or more
expensive than 2.5 �criterion �d−1� /c�, or more expensive
than 4 �criterion d2 /c�.

We tested the conjecture that ratio criteria improve the
search costs in computer simulations. We checked the impact
of the following aspects of the situation: graph size �see Fig.
1�, the distribution of node degrees �see Fig. 2�, and the
distribution of edge costs �see Fig. 3�. The latter had the

FIG. 1. Performance of various search methods as a function of
graph size. The edges were generated according to power law with
�=2.2 and their costs were generated using a uniform distribution in
the interval �0,2�. Costs are the average costs divided by the average
cost of a random walk �which was within 4% from 0.486N0.68�. In
all figures we will be using the same kinds of lines to indicate
results for various search methods.

FIG. 2. Performance of various search methods as a function of
�. The results come from simulations in graphs with N=104.5 nodes
and with Poisson distribution of edge costs that was normalized to
have expectation and variance equal to 1. Costs are the average
costs divided by the average cost of a random walk �which was
within 2% from 0.099N��−1.78�2�.

FIG. 3. Performance of various search methods as a function of
edge-cost distribution. The results come from simulations in graphs
with N=104.5. Costs are the average costs divided by the average
cost of a random walk �which was 0.071N�. All distributions have
mean 1 and variances as indicated.
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largest impact on the relative efficacy of various search cri-
teria.

We repeated the test with different edge-cost distribution
for Erdös-Rényigraphs �see Fig. 4�. Because of a small vari-
ability of node degrees, the criterion of low edge cost per-
forms very well in those graphs, but even so the ratio criteria
performed somewhat better.

IV. CONCLUSIONS

The data shows that criteria based on ratios of a function
of the degree with the edge cost are performing better than
other criteria in all random networks we used for testing. The
types of networks we have used in those tests include all
types tested by Adamic et al. �1� and Thadamakalla et al. �7�.

This shows that one can expect more interesting results on
the search processes in random networks. One should stress
that the model investigated here is quite arbitrary from the
perspective of network design. A standard approach is to

“alter the reality” to make it more suitable for routing or
searching algorithms.

Under the assumptions of GNUTELLA-type networks we
cannot change the network that is created as a result of social
interactions. Neither can we impose a centralized manage-
ment. Nevertheless, we can alter the arbitrary assumption
that the knowledge of the target identity �file location� is
limited to the nodes at most two edges apart. It is more
realistic to assume that the dissemination of the information
about target location has a cost, for example, the number of
edges �and thus, the number of messages� used to dissemi-
nate the information about the target.

According to our sketch of the analysis, the time or cost
of finding a target t with at second neighbors is proportional
to at

−1. This means that we can improve the average if for the
lowest values of at we disseminate the information a bit
more. In our tests, the least node degree was 2 and so was the
least possible number of the second neighbors. Suppose that
information about a node t is annotated with at; then a node
with a second neighbor t that has at=2 can forward the in-
formation about t to its highest degree neighbor, say s, while
s deletes the information about its second neighbor, say u,
with the maximal au. Then the contribution of these two
nodes to the average cost decreases from at

−1+au
−1 to

�at+1�−1+ �au−1�−1.
After that change, each node has the same size of the table

with information about “distant neighbors” and the same
number of messages is used to disseminate the information
about the files, and yet we have somewhat smaller average
search time. One should be able to develop a strategy that
would perform similar changes with some optimized fre-
quency.
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